Hyaluronsäure ist ein Bestandteil der extrazellulären Matrix (EZM oder ECM) von Wirbeltieren. Sie liegt in vielerlei Geweben als langkettiges, lineares Polysaccharid vor und erfüllt viele Funktionen, die auch auf ihren besonderen chemischen Eigenschaften beruhen, etwa der Eigenschaft, sehr viel Wasser zu binden. Nicht selten erreichen die einzelnen Ketten eine molare Masse von mehreren Millionen atomaren Masseneinheiten.
Mechanische Funktionen
Wasserspeicherung
Die Hyaluronsäure besitzt die Fähigkeit, relativ zu ihrer Masse sehr große Mengen an Wasser zu binden (bis zu sechs Liter Wasser pro Gramm). Der Glaskörper des menschlichen Auges z. B. besteht zu 98 Prozent aus Wasser, das an nur zwei Prozent Hyaluronsäure gebunden ist.
Druckbeständigkeit
Wasser ist kaum komprimierbar, und diese Eigenschaft bleibt auch in hyaluronsäurehaltigem Gewebe gültig, in dem sehr viel Wasser gebunden werden kann. Dies gilt allgemein für große Teile des Bindegewebes. Eine besondere Bedeutung hat diese Tatsache während der Embryonalentwicklung, wenn feste Strukturen noch nicht entwickelt sind. Ein weiteres bekanntes Beispiel ist der Nucleus pulposus, der Gallertkern der Bandscheiben, der deshalb große Teile des Körpergewichts tragen kann.
Schmiermittel
Die Hyaluronsäure ist Hauptbestandteil der Synovia (Gelenkflüssigkeit) und wirkt als Schmiermittel bei allen Gelenkbewegungen. Sie zeichnet sich hier zusätzlich durch strukturviskose Eigenschaften aus; ihre Viskosität verändert sich mit einwirkenden mechanischen Kräften, genauer: Sie nimmt ab, je stärker die Scherkräfte werden. Zudem ist sie zwar flüssig, aber durch ihre hochmolekulare Gestalt so viskos, dass sie nicht wie Wasser aus dem Gelenk herausgepresst wird. Durch chemische Wechselwirkungen und die äußere Form „haftet“ sie besonders gut am Knorpel des Gelenks.
Wirken nun im Anfang einer Bewegung, zum Beispiel im Kniegelenk bei Absprung oder beim Stehen, starke Druckkräfte auf ein Gelenk, knäueln sich die Moleküle zu Kugeln zusammen und hängen wie in einem Kugellager an der Knorpeloberfläche. Wenn aber eine schnelle Scherbewegung nötig ist, so zum Beispiel beim Lauf, wird die Zähigkeit der Hyaluronsäure wegen ihrer Strukturviskosität herabgesetzt und die Reibung verringert.
Freihalten von Wegen
Für wandernde Zellen hält die Hyaluronsäure die „Verkehrswege“ frei. Durch Erweiterung der Zellzwischenräume (Abstände zwischen den Zellen) wird die Migration (Wanderung) der Zellen unterstützt.
Biochemische Funktion
Während sich die bisher genannten Funktionen auf frei vorliegende Hyaluronsäure beziehen, ist sie auch an der Bildung weiterer, noch größerer Riesenmoleküle beteiligt, den Proteoglycanen. Insbesondere verknüpft sie bestimmte Proteoglycane (Aggrecan im hyalinen Knorpel) zu riesigen Proteoglycan-Aggregaten.
Funktion im Gehirn
Neben wichtiger Strukturfunktion im Gehirn konnte gezeigt werden, dass Hyaluronan den Wiederaufbau von Markscheiden um Axone (Remyelinisierung) beeinflussen kann. Eine weitere inhibitorische Funktion scheint vor allem bei der Multiplen Sklerose eine Rolle zu spielen.
Interaktion mit Rezeptoren
Eine Reihe von Zelloberflächenrezeptoren interagieren mit Hyaluronsäure und lösen bestimmte Reaktionen der Zelle aus, vor allem die Zellteilung und die Wanderung. In der Embryonalentwicklung sind diese Stimulationen notwendig, bei Kontakt mit Tumorzellen können sie allerdings auch entsprechend für den Organismus nachteilige Auswirkungen haben.
Antikarzinogene Wirkung bei Nacktmullen
Nacktmulle werden bis zu 30 Jahre alt und entwickeln praktisch keine Tumoren. Langkettige Hyaluronsäure ist als Ursache erkannt worden. Es wird angenommen, dass die Tiere diese zur Pflege ihrer Haut bilden sowie dass die krebsverhindernde Eigenschaft ein Nebeneffekt sei. Die normale, kürzere Version der Hyaluronsäure wird am Menschen angewendet und ist gut verträglich. Die langkettige ist nicht erprobt.