Kühlung

Kühlung oder Abkühlung ist ein Vorgang, bei dem einem System oder Gegenstand Wärme bzw. thermische Energie entzogen wird. Kühlung wird deshalb auch als Entwärmung bezeichnet.

In der Technik bezeichnet Kühlung alle Maßnahmen, die dem Abführen der entstehenden Verlustwärme technischer Komponenten an die Umwelt dienen. Erwünschte Kühlung wird genutzt, um vor Überhitzung zu schützen, bestimmte temperaturabhängige Eigenschaften zu erreichen und zu erhalten oder auch für Konservierungszwecke bei Biomaterial.

Unerwünschte Temperaturerniedrigung kann durch Isolierung reduziert werden und mit Erwärmung kompensiert werden.

Thermodynamische Grundlagen

Der Entzug von Wärme geht bei Feststoffen und Flüssigkeiten durch Wärmeübertragung entsprechend einem Temperaturgradienten vonstatten. Die wesentlichen Prozesse sind dabei Wärmeleitung und Wärmestrahlung, eingeschränkt auch die Konvektion. Die effektivste Art mit der größten Leistungsdichte ist die Siedekühlung.

Da all diese Prozesse spontan ablaufen und folglich entsprechend den Grundgesetzen der Thermodynamik einen Temperaturausgleich zur Folge haben, kann eine künstlich erwünschte Kühlung eines Gegenstandes gegen einen Temperaturgradienten nur unter hohem Energieaufwand erfolgen. Insgesamt wird dies jedoch immer in einer Erhöhung der Gesamtentropie und damit im Regelfall einer Umwandlung von Energieformen höherer Ordnung in thermische Energie resultieren. Eine Kühlung im Sinne einer Reduzierung der thermischen Energie eines abgeschlossenen Systems ist daher nicht möglich, was sich in der Praxis zum Beispiel darin äußert, dass auch Kühlschränke letztlich die Temperatur (der Umgebung) erhöhen und nicht senken, wenn dies auch lokal der Fall sein mag.

Die verschiedenen Prozesse der Wärmeübertragung sind für bestimmte Situationen jeweils charakteristisch. So spielt die Konvektion bei Feststoffen keine Rolle, hier dominieren Wärmeleitung und Wärmestrahlung. Dies zeigt sich zum Beispiel an der Ausstrahlung der Erdoberfläche. Die entscheidenden Einflussfaktoren sind dabei durch Wärmeleitkoeffizient, Wärmeübergangskoeffizient und Wärmekapazität gegeben.

Bei Flüssigkeiten spielt die Wärmeleitung und Wärmestrahlung ebenfalls eine Rolle, hinzu kommt jedoch die Konvektion als wesentlicher Prozess des Temperaturausgleichs.

Konvektion dominiert hingegen bei Gasen, wobei diese allgemein nur sehr schlecht über Prozesse der Wärmeleitung abkühlen. Sie unterliegen jedoch verschiedenen Gasgesetzen, wodurch vor allem der adiabatischen Abkühlung und dem Joule-Thomson-Effekt eine große Rolle zukommt. Eine besondere Bedeutung besitzen diese in der Atmosphäre, wenn Luftpakete sich bei Vertikalbewegungen entsprechend dem atmosphärischen Temperaturgradienten abkühlen oder erwärmen. Über Kondensations- und Resublimationsprozesse ist die damit verbundene Abkühlung ein wesentlicher Faktor der Niederschlagsbildung bzw. des Wetters im Allgemeinen.

Kühlleistung

Die Kühlleistung ist ähnlich der elektrischen Leistung die Angabe, wie viel Wärmeenergie je Zeitspanne abgeführt wird. Entsprechend ist der Wärmefluss die je Fläche durchströmende Wärmeleistung.

News

In der Welt des Themas Konservierungsverfahren gibt es ständig Neues zu entdecken. Aktuelle Entwicklungen und spannende Meldungen bieten tiefe Einblicke und erweitern das Verständnis für dieses dynamische Feld. Von bahnbrechenden Entdeckungen bis hin zu wichtigen Ereignissen – die Entwicklungen für das Thema Konservierungsverfahren sind ein Spiegelbild des stetigen Wandels und der Innovation in diesem Bereich.

Kühlungsart

Die Bezeichnung der Kühlungsart ist z. B. in DIN EN 60076-2/DIN VDE 0532-76-2 zu finden und wird meist aus vier Buchstaben zusammengesetzt. Diese erfolgt nach dem Schema

  1. Kühlmittel innen
  2. Kühlmittelbewegung innen
  3. Kühlmittel außen
  4. Kühlmittelbewegung außen

Dabei werden folgende Buchstaben verwendet:

Kühlmittel
ALuft (Air)
GGas (meist SF6)
Knicht-mineralische Kühlflüssigkeiten mit Brennpunkt > 300 °C (z. B. Silikonöl, synthetische oder natürliche Ester)
LIsolierflüssigkeit mit nichtmessbarem Brennpunkt (Liquid)
Omineralisches Öl (Oil) oder synthetische Kühlflüssigkeit mit Brennpunkt ≤ 300 °C
WWasser
Kühlmitteltransport
Nnatürliche Konvektion
Fdurch Gebläse oder Pumpen erzwungene Konvektion („forced“)
Dgerichtete Konvektion („directed“)

Bei ölgefüllten Geräten (z. B. Transformatoren) ergeben sich beispielhaft folgende Kühlungsarten:

Kühlungs-
variante
Innerer KühlkreislaufÄußerer Kühlkreislauf
ONANnatürliche Konvektion ÖlOil Naturalnatürliche Konvektion Umgebungsluft und Wärmestrahlung der OberflächeAir Natural
ONAFnatürliche Konvektion ÖlOil Naturalerzwungene Konvektion Umgebungsluft und Wärmestrahlung der OberflächeAir Forced
OFANerzwungene Konvektion ÖlOil Forcednatürliche Konvektion Umgebungsluft und Wärmestrahlung der OberflächeAir Natural
OFAFerzwungene Konvektion ÖlOil Forcederzwungene Konvektion Umgebungsluft und Wärmestrahlung der OberflächeAir Forced
ODANgerichteter Öl-StrahlOil Directednatürliche Konvektion Umgebungsluft und Wärmestrahlung der OberflächeAir Natural
ODAFgerichteter Öl-StrahlOil Directederzwungene Konvektion Umgebungsluft und Wärmestrahlung der OberflächeAir Forced
ONWNnatürliche Konvektion ÖlOil Naturalnatürliche Konvektion Kühlwasser und Wärmestrahlung der OberflächeWater Natural
ONWFnatürliche Konvektion ÖlOil Naturalerzwungene Konvektion Kühlwasser und Wärmestrahlung der OberflächeWater Forced
OFWFerzwungene Konvektion ÖlOil Forcederzwungene Konvektion Kühlwasser und Wärmestrahlung der OberflächeWater Forced
ODWFgerichteter Öl-StrahlOil Directederzwungene Konvektion Kühlwasser und Wärmestrahlung der OberflächeWater Forced

Leistungsvergleiche

Die folgende Tabelle zeigt am Beispiel von Senderöhren für verschiedene Kühlungsarten den Aufbau der Anode und die maximale spezifische Belastbarkeit.

KühlungsartAnodenartmax. spezifische Belastbarkeit
StrahlungGraphit, Molybdän010 W / cm²
DruckluftAußenanode aus Cu, mit Kühlrippen050 W / cm²
Wasser- oder ÖlkühlungAußenanode aus Cu, von Kühlflüssigkeit umströmt100 W / cm²
SiedekühlungAußenanode aus Cu, Wasser wird verdampft500 W / cm²

Die mit Abstand größte Belastbarkeit ergibt sich bei der Siedekühlung. Hierbei wird sehr viel Energie beim Verdampfen des flüssigen Kühlmediums ausgenutzt, um auf diese Weise eine hohe Leistungsdichte an das Kühlmittel (meistens Wasser) abgeben zu können. Dieses Prinzip der Siedekühlung wird zum Beispiel beim wassergekühlten Kfz-Ottomotor angewendet, um sehr wirksam die Temperatur zu begrenzen.

Technische Anwendung

Kühlsysteme können nach dem verwendeten Wärmeträgermedium unterteilt werden. Die geläufigsten Arten der Kühlung sind:

  • Flüssigkeitskühlung/Wasserkühlung und
  • Luftkühlung oder Wasserstoffkühlung bei großen Generatoren.

Weniger bekannt sind

  • Ölkühlung z. B. im Verbrennungsmotor und in Hydrauliksystemen (hydraulischen Antrieben),
  • Natriumkühlung in Kernkraftwerken (z. B. Brutreaktoren) oder
  • Kühlung durch Peltier-Elemente z. B. für den Einsatz in Kühlboxen für den Campingbereich, seltener zur Kühlung von Prozessoren. Ihre Nachteile, wie beispielsweise der relativ schlechte Wirkungsgrad, wird in Anwendungen in Kauf genommen, bei denen die Vorteile überwiegen, wie beispielsweise in Messgeräten für Gase oder Flüssigkeiten, die konstante Temperaturen erfordern. Hier kann mit Peltiers sowohl gekühlt als auch beheizt werden.

Zur Grundlagenforschung bei tiefen Temperaturen wird mit flüssigem Stickstoff (ca. −196 °C) und für den Temperaturbereich von ca. 1 bis 4 Kelvin mit flüssigem Helium gekühlt (meist in einem Kryostaten, siehe auch bei Tieftemperaturphysik). Das Heliumisotop 3He ermöglicht Temperaturen bis hinab zu 1 mK, siehe bei 3He-4He-Mischungskühlung. Für noch tiefere Temperaturen kann man die Magnetische Kühlung, die Laserkühlung sowie die Evaporative Kühlung einsetzen.

Funktionsweisen

Eine Kühlung basiert meist auf der Übertragung der Wärme vom zu kühlendem Körper zum Kühlstoff (Gas oder Flüssigkeit) und deren Transport (Wärmeströmung).

Bei manchen Anwendungen mit engen Platzverhältnissen (innerhalb eines Computers oder HiFi-Verstärkers) werden zum Abtransport Heatpipes verwendet.

Es gibt bei den meisten Motoren eine spezielle Kühlflüssigkeit.

Einsatzgebiete

Kühlungen werden in vielen technischen Geräten, die sich erwärmen, eingesetzt. Zumeist wird jedoch eine passive Kühlung, das heißt die Abgabe der Wärme über Kühlkörper an die umgebende Luft, genutzt.

Das bekannteste Beispiel ist der Kühlschrank zur Konservierung von Lebensmitteln. In Kraftfahrzeugen wird meist eine Wasserkühlung benutzt, in Computern kommen überwiegend Luftkühlungen zum Einsatz. Ein weiteres großes Einsatzgebiet ist z. B. die Klimaanlage.

Beispiele

  • Kühlsysteme von Kraftwerken und chemischen Prozessen
  • Kühlung von Leistungstransformatoren
  • Kühlung in der Klimatechnik
  • Kühler von Verbrennungsmotoren
  • Abgaskühlung in AGR-Systemen (zur Emissionsreduzierung (NOx))
  • Luft- oder Wasserkühlung eines Prozessors
  • zu Versuchszwecken, um Stoffe in die Nähe der 0-Kelvin-Marke zu bringen
  • Schiffskühlsysteme
  • Chemische Kühlung
  • Kühlung der Abgase von Schiffen oder Panzern, um auf gegnerischem Infrarot (Wärmebildkamera) möglichst wenig/spät sichtbar zu sein (z. B. Stealth-Technologie bei Schiffen der Fridtjof-Nansen-Klasse)