The physics of gummy candy
Dozens of ingredient and storage combinations reveal what factors make some gummies harder than others and how product formulation affects shelf life
Suzan Tireki
In Physics of Fluids, by AIP Publishing, researchers from Ozyegin University and Middle East Technical University conducted a series of experiments that explore how changing key parts of the gummy-making process affects the final product, as well as how the candies behave in different storage temperatures. They used these results to identify the most shelf-stable combination for gummy candies.
To tackle these questions, the group adjusted a variety of inputs while making the gummies, from the glucose syrup-to-sucrose ratio to starch and gelatin concentrations. They wanted to understand how these changes affected features like candy texture, moisture content, and pH.
They then studied the resulting features of the candies before and after storage. Storage conditions varied from 10 to 30 degrees Celsius for 12 weeks or 15 to 22 C for a year.
Such extensive combinations of procedures presented their own hurdles during the study.
“A high number of parameters was the main challenge in our study,” author Suzan Tireki said. “We had eight different candy formulations, four different temperature conditions, and two different storage times. Another challenge was to try to find a common model for all these eight formulations, as each of them behaved differently.”
To account for such a variety of variables, the researchers used a statistical model to describe how each combination affected the quality parameters of the gummy. They specifically explored the chemical crosslink distances, or the length of bonds between molecules in the candy.
“The most innovative part of our study was investigating the texture of the gummy candies by estimating the average crosslink distances using the hardness data coming from texture profile analysis,” Tireki said.
The moisture content and pH, for example, were heavily dependent on the glucose syrup-to-sucrose ratio, whereas the gelatin content affected crosslink distances.
“Our most surprising finding was that hardness and average crosslink distance were not affected by the amount of starch,” Tireki said.
Identifying the most stable combinations for gummies can extend shelf life and improve candy quality in different climates and across the food industry.
The researchers next look to explore the role of plant-based formulations, mold shapes, and packaging types.
Most read news
Topics
Organizations
Other news from the department research and development
Get the food & beverage industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.