Mikroorganismen können Plastik im Boden zersetzen
Bioabbau von Plastik in der Landwirtschaft kann Böden schützen
Michael Zumstein, with equipment maintained by the Center for Microscopy and Image Analysis, University of Zurich
University of Vienna / Large-Instrument Facilitiy for Advanced Isotope Research
Gregor Eder
Schon seit den 1960er Jahren werden in der Landwirtschaft Plastikfolien zum sogenannten Mulchen (Bedecken des Bodens) verwendet. Sie haben vielerlei Nutzen – zum Beispiel ermöglichen sie eine bessere Verteilung und langsamere Verdunstung von Feuchtigkeit im Boden, ideale Temperaturen für Pflanzenwurzeln und Schutz vor Unkräutern und Insekten. Damit verbessern sich die Bedingungen für das Pflanzenwachstum, während sich der Wasserverbrauch sowie der Einsatz von Herbiziden und Düngemitteln verringert. Erhöhte Anbauerträge durch die Verwendung von Mulchfilmen können somit dazu beitragen, Nahrung für die wachsende Weltbevölkerung zu produzieren.
Neben allen wirtschaftlichen Vorteilen, die die Verwendung von Mulchfilmen erzielt, gibt es jedoch möglicherweise auch große Nachteile für die Umwelt, insbesondere für die Böden. Üblicherweise bestehen Mulchfilme nämlich aus nicht-abbaubarem Polyethylen (PE). Werden diese PE-Folien nach der Ernte nicht vollständig von den Böden entfernt, bleiben Reste zurück und reichern sich auf Dauer im Boden an. Es wird geschätzt, dass 2016 weltweit sechs Millionen Tonnen Plastik in der Landwirtschaft verwendet wurden, davon allein zwei Millionen Tonnen in Form von Mulchfilmen. Selbst wenn nur ein kleiner Teil der Filme in die Böden gelangt, beeinträchtigen die Rückstände Pflanzenwachstum und Ertrag.
Ein vielversprechender Weg, die Anreicherung von Plastik in landwirtschaftlichen Böden zu umgehen, ist die Nutzung von Folien aus Polymeren, die von Bodenmikroorganismen abgebaut werden können. Ein in dieser Hinsicht vielversprechendes Polymer, das in Mulchfilmen verwendet wird, ist PBAT (Polybutylenadipat-terephthalat). Bisher konnte der Bioabbau durch Veratmen des Polymer-Kohlenstoffs zu CO2 und der gleichzeitige Einbau von Polymer-Kohlenstoff in Mikrobenbiomasse noch nicht direkt nachgewiesen werden. Außerdem blieb unklar, ob alle organischen Bausteine des Polymers von Mikroorganismen abgebaut werden können, um zu gewährleisten, dass keiner davon im Boden zurückbleibt.
Um den biologischen Abbau in Böden näher zu untersuchen verwendeten die Forscher um Michael Sander an der ETH Zürich (Department Umweltsystemwissenschaften) und der Eawag (Abteilung für Umweltmikrobiologie) spezielles PBAT, dessen Bausteine statt des herkömmlichen Kohlenstoffs 12C eine erhöhte Menge des stabilen Kohlenstoffisotops 13C enthielten. "Da das 13C-Isotop in der Umwelt nur etwa ein Prozent allen Kohlenstoffs ausmacht, kann es in angereicherter Form in Polymeren hervorragend verwendet werden, um den Fluss von Kohlenstoffatomen aus dem Polymer während des Bioabbaus in Böden zu verfolgen", erklärt Michael Zumstein, der Erstautor der Studie.
Der Abbauprozess im Boden verläuft in zwei Schritten: Zuerst muss das PBAT durch mikrobielle Enzyme in seine einzelnen Bausteine zerlegt (depolymerisiert) werden. Dann können die kleinen Bausteine von den Bodenmikroorganismen aufgenommen und verwertet werden. Um den Einbau des 13C-Kohlenstoffs in die Biomasse von Bodenmikroorganismen nachzuweisen, wurden in Kollaboration mit einem MikrobiologInnen-Team der Universität Wien die Polymerproben aus den Bodenexperimenten mittels hochortsaufgelöster Sekundärionen Massenspektrometrie (NanoSIMS) untersucht. "Diese Technik ermöglichte den direkten Nachweis, dass Bodenmikroorganismen Polymer-Kohlenstoff auch in ihre Biomasse einbauen", erklärt Dagmar Woebken, die sich mit ihrer Arbeitsgruppe an der Universität Wien auf die Untersuchung von Bodenmikroorganismen mittels NanoSIMS spezialisiert hat. Die Messungen zeigten, dass sowohl Pilze wie auch einzellige Mikroorganismen (also höchstwahrscheinlich Bakterien) am Abbau des Polymers beteiligt waren. Und vor allem, dass alle drei Bestandteile des Polymers von Mikroorganismen genutzt wurden.
Weitere Abbauversuche, auch längerfristige mit unterschiedlichen Böden, werden aufzeigen, welchen Beitrag bioabbaubare Polymere zu einer nachhaltigeren Landwirtschaft der Zukunft leisten werden.
Originalveröffentlichung
Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass: Michael Thomas Zumstein, Arno Schintlmeister, Taylor Frederick Nelson, Rebekka Baumgartner, Dagmar Woebken, Michael Wagner, Hans-Peter E. Kohler, Kristopher McNeill, Michael Sander, Science Advances 4, eaas9024 (2018)