Die hohe Abhängigkeit der Trockengeschwindigkeit von der Temperatur macht man sich in Darren, Trocknungskammern, Trockenschränken und Wäschetrocknern zunutze. Es finden jedoch auch die mit einer Temperaturerhöhung verbundenen Trockenprozesse der Teigtrocknung, Filmtrocknung und Sprühtrocknung eine Anwendung. Weitere Verfahren sind die im Folgenden dargelegten Prozesse der Gefriertrocknung, überkritischen Trocknung und Mikrowellentrocknung.
Gefriertrocknung
Bei der Gefriertrocknung wird das zu trocknende Gut zunächst gefroren. Das Wasser geht anschließend vom festen Zustand direkt in den gasförmigen über – es sublimiert. Einer der Vorteile besteht darin, dass das zu trocknende Gut im gefrorenen Zustand konserviert ist. Wirtschaftlich bedeutend ist die Herstellung von gefriergetrocknetem löslichem Kaffee. Ein exotisches Beispiel der Anwendung dieser schonenden Trocknungsmethode ist die Restaurierung von historischen Dokumenten aus Papier nach dem Elbhochwasser 2002.
Überkritische Trocknung
Wie die Gefriertrocknung geht auch die überkritische Trocknung einen Umweg um die Verdampfung, jedoch indem mit hohen Drücken und Temperaturen der kritische Punkt überschritten wird. Grundprinzip ist, dass der Stoff zunächst vom flüssigen in den überkritischen Zustand versetzt wird und hiernach bei konstanter Temperatur den Druck auf den Umgebungsdruck überführt. Eine Phasengrenze passiert man dabei im Unterschied zur unterkritischen Trocknung und auch Gefriertrocknung nicht, da eine Unterscheidung zwischen Gas und Flüssigkeit nicht möglich ist.
Mikrowellentrocknung
Bei der Mikrowellentrocknung wird eine nasse Bausubstanz direkt entfeuchtet. Dies geschieht durch die Bestrahlung mit hochenergetischen Mikrowellen, die eine Bewegung der Wassermoleküle im Inneren der Bausubstanz auslösen. Die hierbei entstehende Reibungswärme trocknet die Bausubstanz von innen nach außen. Bei lebenden Organismen ist dieses Verfahren tödlich.
Kondensationsverfahren
Kondenstrockner entziehen der Luft Feuchtigkeit, indem diese unter den Taupunkt abgekühlt und über ein Wärmerückgewinnungsregister wieder erwärmt wird: Feuchte Raumluft wird durch einen im Gerät eingebauten Ventilator angesaugt. Die Luft wird über ein Kühlteil (dem sogenannten Verdampfer) geführt. Daran wird die Luft schockartig so weit abgekühlt, dass deren Taupunkt unterschritten wird. Da kalte Luft kaum Feuchtigkeit speichern kann, kondensiert die Feuchtigkeit an der kalten Oberfläche.
Das physikalische Funktionsprinzip kann man auch im Sommer beobachten, wenn man eine kalte Flasche aus dem Kühlschrank nimmt und damit ins Freie geht – am Glas bilden sich Wassertröpfchen, da die Umgebungstemperatur sich an der kalten Oberfläche abkühlt. Dasselbe Prinzip wird hier angewandt. Im tiefen Temperaturbereich bildet sich an dieser Kühlfläche ein Eisfilm. Da fast jeder Lufttrockner mit einer Abtauautomatik ausgestattet ist, schaltet der Trockner je nach Bedarfsfall diese Abtaufunktion ein – das Eis wird verflüssigt und sammelt sich im Behälter. Die getrocknete Luft passiert im Trocknungsgerät einen „Wiedererwärmungsteil“ und tritt trocken und temperiert an der Frontseite des Gerätes aus.
Das sich bildende Kondensat wird in einem Wasserbehälter gesammelt oder kann über eine Schlauchleitung direkt abgeführt werden.
Vakuumtrocknung
Bei der Vakuumtrocknung wird das Trockengut einem Unterdruck ausgesetzt, was den Siedepunkt reduziert und somit auch bei niedrigen Temperaturen zu einer Verdampfung des Wassers führt. Die dem Trockengut kontinuierlich entzogene Verdampfungsenthalpie muss bis zur Temperaturkonstanz von außen nachgeführt werden. Angewandt wird dieses schonende Verfahren vor allem bei hitzeempfindlichen Lebensmitteln und Chemikalien. Hierdurch wird außerdem der Gleichgewichtsdampfdruck erniedrigt, was den Kapillartransport begünstigt.
Zur Verbesserung der Trockenwirkung kann man das zu trocknende Gut erwärmen, z. B. in Vakuumtrockenschränken, oder zur Nachtrocknung noch ein Trockenmittel wie P2O5 einbringen, bei kleinen Probemengen geschieht dies in sog. Trockenpistolen.
Adsorptionstrocknung
Der Adsorptionstrockner wird auch als Sorptionstrockner oder Rotortrockner bezeichnet. Die zu trocknende Luft wird durch einen Ventilator in den Sorptionstrockner geleitet. Im Modul befindet sich ein sich ständig drehendes Trockenrad (der Rotor – deswegen der Name Rotortrockner). Dieses Rad hat eine wabenförmige Struktur und besteht aus vielen axial verlaufenden Kanälen. Durch die hygroskopische Wirkungsweise des Rotormaterials wird der Luft die Feuchtigkeit entzogen. Die Wassermoleküle müssen kontinuierlich aus dem Rotor entfernt („regeneriert“) werden. Zu diesem Zweck wird über einen zweiten Ventilator Luft angesaugt, auf hohe Temperaturen erhitzt und von den anderen Luftströmen getrennt über den Rotor geleitet.
Durch die hohe Temperatur verdampft die Feuchtigkeit des Rotors – der erwärmte Wasserdampf wird über einen Luftschlauch abgeleitet. Dies ist der sogenannte Regenerationsluftstrom. Im Gerät verbleibt die getrocknete Luft – diese wird dem Raum zugeführt (Trockenluftstrom). Mit Prozessluft wird jener Luftstrom bezeichnet, der aus dem Raum in den Rotortrockner geleitet wird (also der „Feuchtluftstrom“).
Permeationstrocknung mittels Nafion-Membranen
Nafion-Membran ermöglicht die Trocknung von Gasen ohne Kondensieren. Dabei wird nur Wasserdampf aus dem Medium entfernt. Dies bedeutet kein Verlust an auswaschbaren (wasserlöslichen) Komponenten wie HCl, Cl2, H2S, HF, F2, SO2, NO2.
Granulattrocknung
In einem Behälter befindet sich ein Granulat, das entweder aus Salzkristallen oder chemischen Stoffen besteht. Bei der passiven Granulattrocknung zieht das Granulat die Feuchtigkeit aus der Umgebungsluft. Bei der aktiven Granulattrocknung wird die Luft durch einen Ventilator angesaugt und über das Granulat geleitet.
Das Granulat muss in regelmäßigen Abständen erneuert werden. Oder man verwendet Regenerationsgranulat, dieses muss in regelmäßigen Abständen entnommen und getrocknet werden.