Xylit

Xylit, auch Xylitol oder Birkenzucker genannt, ist ein Stereoisomer des Zuckeralkohols Pentanpentol. Als Lebensmittel­zusatzstoff trägt er die Bezeichnung E 967 und dient als Zuckeraustauschstoff. Die Entdeckung geht auf den späteren Nobelpreisträger Emil Fischer zurück.

Untersucht wird bei Xylit eine mögliche kariostatische und antikariogene Wirkung. Auf einige Säugetiere, vor allem Hunde, wirkt Xylit dagegen toxisch (Xylitvergiftung).

Entdeckung

Xylit wurde erstmals um 1890 von Emil Fischer und seinem Doktoranden Rudolf Stahel aus Buchenholzspänen isoliert, vgl. altgriechisch ξύλον xýlon, deutsch Holz. Ihre Entdeckung, die sie Xylit nannten, veröffentlichten sie 1891. Etwa zur gleichen Zeit wie Fischer und Stahel isolierte der französische Chemiker M. G. Bertrand aus Weizen- und Haferhalmen eine Art Xylitsirup.

Vorkommen und Herstellung

Xylit ist neben Sorbitol als natürlicher Zuckeralkohol Bestandteil vieler Gemüsesorten wie u. a. Blumenkohl und Früchten, wie Pflaumen, Erdbeeren oder Himbeeren, wobei der Anteil kleiner als 1 % der Trockenmasse ist. Auch in der Rinde bestimmter Holzarten wie z. B. Birke und Buche ist Xylit enthalten.

Die industrielle Herstellung von Xylit beruht auf Xylanen (Holzgummi) aus landwirtschaftlichen Reststoffen wie Maiskolbenresten (Maisspindeln), Stroh, Getreidekleien oder Zuckerrohr-Bagasse; diese kommen auch in Birkenholz und -rinde in anderen Laubhölzern vor. Aus diesen wird Xylose bei Temperaturen von bis 200 °C und unter Einsatz von Schwefelsäure oder Natronlauge freigesetzt. Die Xylose wird dann mit einem Katalysator unter hohem Druck zu Xylit umgesetzt. Biotechnologische Verfahren wie der Einsatz von Hefen wie etwa Candida tropicalis sind möglich, werden jedoch noch nicht in großtechnischem Maßstab verwendet. Die industrielle Herstellung ist aufwendig, weshalb Xylit ein verhältnismäßig teurer Zuckeraustauschstoff ist.

Als Zwischenprodukt werden im menschlichen Körper während des Kohlenhydratabbaus täglich 5 bis 15 Gramm Xylit in der Leber hergestellt.

Unternehmen zum Lebensmittelzusatzstoffe

Im Bereich von Lebensmittelzusatzstoffe agieren zahlreiche Unternehmen, die mit ihren Produkten und Dienstleistungen Lösungen für dieses Thema anbieten. Die Firmenliste bietet einen umfassenden Überblick über die Akteure, die im Bereich Lebensmittelzusatzstoffe eine Schlüsselrolle spielen. Von etablierten Branchenführern bis hin zu aufstrebenden Start-ups, jedes Unternehmen trägt auf seine Weise zur Dynamik und Entwicklung von Lebensmittelzusatzstoffe bei.

Unternehmen Herkunft Typ
Bloom Biorenewables
Bloom Biorenewables
Marly, Schweiz Hersteller
MicroHarvest
MicroHarvest
Hamburg, Deutschland Hersteller
Embion Technologies
Embion Technologies
Lausanne, Schweiz Dienstleister
Mach dich wach – s erste Koffein-Lutschpastillen
Mach dich wach – s erste Koffein-Lutschpastillen
Laudenbach, Deutschland Hersteller
Dr. Paul Lohmann
Dr. Paul Lohmann
Emmerthal, Deutschland Hersteller
Wacker
Wacker
München, Deutschland Hersteller
Actigenomics
Actigenomics
Epalinges, Schweiz Hersteller
DKSH
DKSH
Zürich, Schweiz Dienstleister
Naturally Splendid Enterprises
Naturally Splendid Enterprises
Burnaby, Kanada Hersteller

Eigenschaften

Chemisch ist Xylit ein fünfwertiges Alditol. Das Molekül ist pseudoasymmetrisch und liegt in einer achiralen meso-Form vor. Die andere achirale Form von Pentitol ist Ribitol, die chirale Form Arabitol.

Xylit hat einen ähnlichen Geschmack wie Saccharose (Haushaltszucker), ist aber etwas süßer. Im Vergleich zu Sorbit hat er die doppelte Süßkraft. Löst sich Xylit im Mund im Speichel, entzieht er der Umgebung Wärme und erzeugt auf der Zunge einen Kühleffekt (endotherme Lösungswärme) von −153,2 J/g, der ähnlich beschrieben wird wie der Effekt von Menthol. Xylit wird als Zuckeraustauschstoff in Lebensmitteln verwendet.

Der physiologische Brennwert von 10 kJ/g (2,4 kcal/g) ist 40 % geringer als bei Saccharose. Der Stoffwechselweg im menschlichen Körper läuft nahezu unabhängig von Insulin ab. Werden bei Saccharose Insulinwerte von ca. 110 pmol/l erreicht, sind es bei Xylit nur noch 50 pmol/l. Er beeinflusst den Blutzucker- und Insulinspiegel daher geringfügiger als Saccharose. Xylit wird deswegen von Diabetikern als Ersatz für Saccharose verwendet.

Xylit ist hitzestabil und karamellisiert nur, wenn er mehrere Minuten auf über 200 °C erhitzt wird. Bei Temperaturen um ca. 100 °C findet keine Karamellisierung statt. In reinem Zustand liegt er in Form von hygroskopischen Kristallen vor.

Xylit kann anstelle von Zucker sowohl beim Backen als auch beim Kochen eingesetzt werden, er weist keinerlei Beigeschmack auf. Die Konsistenz ist sehr ähnlich, allerdings ist Xylit in warmem Zustand besser löslich als kalt. Einzige Einschränkung: Backhefe kann Xylit nicht verstoffwechseln, was beim Ersatz von Zucker in Hefeteigrezepten beachtet werden sollte. Verzichten sollte man außerdem darauf, den Zuckeraustauschstoff mit anderen Süßungsmitteln wie Aspartam, Saccharin oder Sorbit zu mischen – er ist dann eventuell nicht mehr gut verträglich.

Xylit ist ein Molekül, das viel Wasser binden kann. Er wird im Dünndarm nur passiv, also langsam und unvollständig resorbiert. Bei regelmäßiger Einnahme kann die Resorptionsrate im Dünndarm durch Enzyminduktion erhöht werden. Bei Einnahme von mehr als 0,5 g Xylit pro kg Körpergewicht kann eine abführende Wirkung auftreten, welche nach Adaption des Organismus (nach 3–4 Wochen Gewöhnungszeit) verschwinden kann. Im Rahmen von Studien wurde die Einnahme von 200 g Xylit täglich problemlos vertragen. Bei Sorbit besteht diese Anpassung nicht, daher wirkt Sorbit immer abführend. Xylit wird im Körper über den Pentosephosphatweg metabolisiert.

Im Dickdarm wird der restliche Xylit (etwa zwei Drittel der eingenommenen Menge) durch Bakterien zerlegt und zu kleinen Fettsäurebestandteilen abgebaut und resorbiert. Diese werden zu Kohlenstoffdioxid (CO2) und Wasser verstoffwechselt.

Medizinische Bedeutung

Mögliche antikariogene Wirkung

Studien

Anfang der 1970er Jahre wurden mögliche kariesreduzierende Eigenschaften des Zuckeralkohols entdeckt. An der Universität Turku (Finnland) wurden in den Jahren 1972 bis 1975 zwei kleine klinische, nichtrandomisierte Studien (bekannt als Turku-Zuckerstudien) durchgeführt, die eine Reduktion von Karies belegen konnten. Während der ersten, zweijährigen Studie wurde Zucker (Saccharose) in allen Lebensmitteln durch Fructose oder Xylit ersetzt. Die Zunahme des DMFS-Index lag bei 7,2 in der Saccharose-Gruppe, bei 3,8 in der Fructose-Gruppe und bei 0,0 in der Xylit-Gruppe. Die zweite Studie war eine einjährige Kaugummistudie, bei der ca. 100 Teilnehmer xylit- oder saccharosehaltige Kaugummi erhalten haben. Im Vergleich zur Saccharosegruppe wurde bei den Xylitprobanden eine Reduktion der Karieszuwachsrate um mehr als 82 % ermittelt. Der Kaueffekt konnte ausgeschlossen werden, da beide Gruppen die gleiche Menge Kaugummi konsumierten.

Diese Effekte werden dadurch erklärt, dass die kariogenen Bakterien der Art Streptococcus mutans Xylit nicht verstoffwechseln können und damit absterben. Sie werden auch daran gehindert, sich als Plaquebakterien an die Zahnoberfläche anzuheften. Als optimale Xylitmenge wurden zwischen 5 und 10 Gramm pro Tag in mehreren Portionen ermittelt. In einer weiteren Turku-Studie aus dem Jahr 2000 wurden die Wechselwirkungen zwischen Müttern, die regelmäßig xylithaltige Kaugummis kauten, und ihren Kindern (bis 2 Jahre alt) untersucht. Ein Ergebnis der Studie war, dass der regelmäßige Konsum von Xylit-Kaugummis durch die Mütter den Befall mit Streptococcus mutans bei den Kindern signifikant hemmt.

Eine Doppelblind-Studie aus dem Jahr 2013 mit 538 Personen, die 5 Gramm Xylit pro Tag bekamen, fand hingegen keine vorbeugende Wirkung gegen Karies bei Patienten mit einer ausreichenden Fluoridaufnahme.

Eine Metastudie der Cochrane Collaboration aus dem Jahr 2015 hat eine mögliche Verringerung von Karies bei Kindern durch fluoridhaltige Zahnpasta mit Xylit (im Vergleich zu nur fluoridhaltiger Zahnpasta) untersucht. Schlussfolgerungen über eine vorbeugende Wirkung seien aufgrund der schlechten Qualität der Belege und methodischer Mängel wenig aussagekräftig. Aussagekraft über andere xylithaltige Produkte ist durch die sehr schlechte Qualität ebenfalls nicht gegeben.

Insgesamt ist ein karieshemmender Nutzen größtenteils unklar.

Mechanismus und Resistenz

Xylit wird bei Streptococcus mutans über das Phosphoenolpyruvat-Phosphotransferasesystem (PEP-PTS) unter Verbrauch von PEP in die Zelle transportiert, dabei entsteht Xylit-5-phosphat. Xylit-5-phosphat beeinflusst die Enzyme der Glykolyse (wie die Phosphofructokinase), was zu einer Wachstumshemmung von S. mutans führt. Außerdem wird es durch eine intrazelluläre Phosphatase zu Xylit wieder dephosphoryliert und unter Energieverbrauch aus der Zelle transportiert. Somit tritt Xylit in einen Substratzyklus („Leerzyklus“) ein, was zu einer Entleerung der Energiespeicher führt. Auch dies hemmt das Bakterienwachstum.

Es wird vermutet, dass nicht alle Stämme von S. mutans empfindlich für Xylit sind und sich darum resistente Stämme bei Xylitverwendung bevorzugt vermehren können. Ferner wird jedoch vermutet, dass diese weniger kariogen sind. Der Resistenzeffekt kommt dabei auch nicht so stark zum Tragen wie bei Antibiotika, da Xylit eine weitere Wirkung besitzt, nämlich die Verringerung des Biofilms, der Schleimschicht auf den Zähnen und in der Mundhöhle, die durch Mangel an benötigten Kohlenhydraten und Kaugummibenutzung bewirkt wird. Dadurch weisen selbst Patienten mit hauptsächlich resistenten Stämmen eine verringerte Besiedlung auf.

Prophylaxe der akuten Mittelohrentzündung

Da Xylit das Wachstum von Pneumokokken und die Bindung von Pneumokokken und Haemophilus influenzae an die Zellen im Nasenrachenraum inhibieren kann, wird untersucht, ob die Gabe von Xylit eine vorbeugende Wirkung gegenüber einer akuten Mittelohrentzündung erzielt. Ein Cochrane-Report von 2016 hat die Evidenz über die Wirksamkeit und Sicherheit von Xylit (bei Dosen von bis zu 10 g pro Tag) zur Vorbeugung einer akuten Mittelohrinfektion bei Kindern bis 12 Jahre überprüft. Es gibt moderate Evidenz dafür, dass bei gesunden Kindern die prophylaktische Gabe von Xylit das Risiko einer Mittelohrentzündung von 30 % auf 22 % senkt. Es besteht aber die Gefahr eines Bias, da nur wenige Studien vorliegen und diese meistens von derselben Arbeitsgruppe stammen.

News

In der Welt des Themas Lebensmittelzusatzstoffe gibt es ständig Neues zu entdecken. Aktuelle Entwicklungen und spannende Meldungen bieten tiefe Einblicke und erweitern das Verständnis für dieses dynamische Feld. Von bahnbrechenden Entdeckungen bis hin zu wichtigen Ereignissen – die Entwicklungen für das Thema Lebensmittelzusatzstoffe sind ein Spiegelbild des stetigen Wandels und der Innovation in diesem Bereich.

Tiermedizinische Bedeutung

Xylit hat bei einigen Tierarten (Hunde, Rinder, Ziegen, Kaninchen) einen stark insulinausschüttenden Effekt, der zu einem lebensbedrohlichen Abfall des Blutzuckerspiegels (Hypoglykämie) führen kann. Bei Hunden wurden zudem schwere Leberschädigungen bis zum Leberversagen und Gerinnungsstörungen beobachtet. Bereits eine Dosis von 0,1 g pro kg Körpermasse wirkt für das Tier toxisch, eine letale Dosis wird ab ca. 3–4 g Xylit pro kg Körpergewicht erreicht. Der Verzehr einer Tüte xylithaltiger Bonbons kann selbst für einen großen Hund tödlich sein, wenn das Tier nicht schnellstmöglich intensivmedizinisch betreut wird.

Für Katzen sind Produkte, die Xylit enthalten, grundsätzlich unbedenklich. In einer Studie an Katzen wurde die positive Wirkung von Xylit für deren Mundhygiene nachgewiesen. Wird Katzen mit Xylit angereichertes Wasser gegeben, vermindert dies signifikant Zahnstein und Plaque.

Whitepaper

Im Bereich von Lebensmittelzusatzstoffe bieten White Papers und Fachartikel weitergehende Einblicke und fundiertes Wissen. Diese Sammlung von Fachwissen bietet Ressourcen für alle, die sich eingehend mit den Facetten und Nuancen des Themas Lebensmittelzusatzstoffe beschäftigen möchten. Diese Auswahl an Veröffentlichungen deckt ein breites Spektrum ab – von theoretischen Überlegungen bis hin zu praktischen Anwendungen und Fallstudien - und umfasst Arbeiten von Experten, die Licht auf die komplexen Aspekte von Lebensmittelzusatzstoffe werfen.

Strukturformel
Strukturformel von D-Xylit
Xylit in der Fischer-Projektion
Allgemeines
Name Xylit
Andere Namen
  • Xylitol
  • (2R,3r,4S)-Pentan-1,2,3,4,5-pentol
  • xylo-1,2,3,4,5-Pentanpentol
  • E 967
  • Birkenzucker
  • XYLITOL (INCI)
Summenformel C5H12O5
Kurzbeschreibung

farblose, süß schmeckende Kristalle

Externe Identifikatoren/Datenbanken
CAS-Nummer 87-99-0
EG-Nummer 201-788-0
ECHA-InfoCard 100.001.626
PubChem 6912
ChemSpider 6646
DrugBank DB11195
Wikidata Q212093
Eigenschaften
Molare Masse 152,15 g·mol−1
Aggregatzustand

fest

Dichte

1,52 g·cm−3

Schmelzpunkt

94 °C

Siedepunkt

216 °C

Löslichkeit
  • leicht in Wasser (642 g·l−1 bei 25 °C)
  • leicht in Pyridin
  • wenig in Alkohol
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung
keine GHS-Piktogramme

H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze
Toxikologische Daten

12,5 g·kg−1 (LD50, Maus, oral)

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.